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Generalized vector coherent state theory of sp(2N, R) vector
operators and of sp(2N, R) = u(N) reduced Wigner coefficients

C Quesnet

Physique Nucléaire Théonque et Physique Mathématique CP229, Universite Libre de
Bruxelles, Bd du Triomphe, B1050 Bruxelles, Belgium

Recerved 11 February 1991

Abstract. sp(2N, R) > u{ N) reduced Wigner coefficients coupling a posttive discrete series
urutary wreducible representation with the 2 N-dimensional non-unttary wreducible rep-
resentation charactenized by (1) are evaluated by making use of generahzed vector coherent
state technigues General formulae are given i terms of the K-matnx elements of vector
coherent state theery and of some u{N} ;- or 9-type recouphng coefficients. Explicit
analytic expressions are obtaned in some ymportant special cases Such results should
allow a recent determiation of wspi2 N, ) = w{N}Dsp(2N, R) and osp( P/2N, R) matnx
representations to be completed, because both the w{ N') generators and the osp(P/2N, R)
odd generators transform under the sp(2N, R) 1rrep (1,

1. Introduction

The non-compact symplectic algebra sp(2N, R) being the main component of the
N-dimensional harmonic oscillator dynamical algebra (Hwa apnd Nuyts 1966,
Moshinsky and Quesne 1971, Wybourne 1974) appears in many physical problems,
The harmonic oscillator eigenstates carry infinite-dimensional umiary irreducible rep-
resentations {irreps) of sp(2N, R) belonging to the positive disciete series. However
physically relevant operators usually transform under some finite-dimensional non-
unitary irrep. To exploit the Wigner-Eckart theorem with respect to sp(2N, R}, one
therefore needs the sp(2NV, R) Wigner coefficients coupling a positive discrete series
unitary irrep with a finite-dimensional non-unitary one to give another positive discrete
series unitary irrep. The latter however remain unknown, except for the case where
N =1, for which they coincide with some su(1, 1) Wigner coefficients determined many
years ago by Ui (1968),

Finite-dimensional non-unitary irreps also play an important role whenever
sp(2N, R) is embedded into some larger finite-dimensional algebra g. In such a case,
they indeed govern the transformation properties of the additional generators
under sp(2N, R}, so that a complete determination of the matrix irreps of g in a
g =sp(2N, R) = u( N) basis requires an explicit knowledge of the previously mentioned
sp(2N, R) Wigner coefficients. Two examples of such embeddings were recently studied
in detail, corresponding to g=wsp(2N, R}=w(N)PDsp(2N,R) (Quesne 1990a) and
g =osp(P/2N,R), P=2M or2M + 1 (Quesne 1990b), respectively. Here w(N') denotes
the Heisenberg- Weyl algebra generated by N pairs of boson creation and annihilation
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2698 C Quesne

operators (and the unit operator), and osp{ £/2 N, R} the orthosymplectic superalgebra
whese even subalgebra is so{ PY@®sp(2N, R) In both cases, the additional generators
are vector operators with respect to sp(2N,R), i.e. they transform under the 2N-
dimensional 1rrep {1).

The aim of the present paper is to determine the sp(2N, R) Wigner coefficients
which couple a positive discrete series irrep with the irrep (1. For such a purpose, we
shall make use of the vector coherent state (vcs) theory (Deenen and Quesne 1984,
Rowe 1984) and its associated K-matrix technique (Rowe 1984, Castafios et al 1985,
Deenen and Quesne 1983, Hecht 1987, Rowe et al 1988). vcs theory 15 indeed not
only useful for determining explicit matrix representations of many Lie algebras and
superalgebras, but it 15 also applicable to the Wigner-Racah calculus of tugher rank
algebras (Hechi et af 1987, Le Blanc and Hecht 1987, Le Blanc and Biedenharn 1989).
Very recently, it has been generahzed to include the ves realizations of simple operators
lying outside the algebras, thereby providing a very powerful tool for a detailed
evaluation of their matrix elements and thence of Wigner coefficients {Hecht 1989,
Hecht and Biedenharn 1990, Hecht and Chen 1990).

So far, the generalized vcs theory has been applied to the calculation of g= k
reduced Wigner coefficients, for which the reduction of a product of g (resp. h) irreps
mto a direct sum of g (resp. k) irreps was known beforehand, namely u(N)>u(N—1)
(Hecht et al 1987, Le Blanc and Hecht 1987, Le Blanc and Biedenharn 1989, Hecht
and Biedenharn 1990), sp(4) =~s0(5) >u{2) (Hecht 1989), and sp(6) > u(3} reduced
Wigner coefficients (Hecht and Chen 1990). In the present paper, we are confronted
with a more challenging case. except when N =1, no information is indeed available
about the decomposition of the product of a positive discrete series unitary ixrep with
a vector irrep of sp(2N, R). However, the generahzed vcs technique will prove a very
powerful tool for determining such a branching rule. As in its previous applications,
it can be used to express the sp(2N, R) = u{N) reduced Wigner coefficients in terms
of the known K-matrnix and of some u(N) 6j- or 9-type recoupling coefficients. In
various important cases, very explicit analytic expressions are therefore obtained for
these coefficients

In the following section of this paper, the sp(2N, R} 2> u{ NV} vcs theory 15 briefly
reviewed. Then, in section 3, the generalized theory is apphed to evaluating the matrix
elements of boson operators. Finally, in section 4, general formulae for the correspond-
ing spi2ZN, R} > u{N) reduced Wigner coefficienis are determined, and some simpie
examples are worked out in detail.

2. Vector coherent state theory of sp(2N, B) > u(N)

The sp(2N,R) algebra is spanned by the u(N) subalgebra generators E,=(E,)", 1,
ji=1,. .. N, a set of commuting raising operators D, =D/, i, j=1,.. , N, and the
corresponding Hermitian conjugate lowering operators D, = D, =(D}}, ,j=1,..., N
(Deenen and Quesne 1984). Such operators, whose non-vanishing commutators are
given by

[E,_,, EJJ] = 6}kExi' - 6aIEk3
{Eljs D;d]-'; ajkD;_}-aﬂDjk [Elj’ D’J]=.—alkD_[1 -'slijk {2-1)
[Du! DL‘} = 6"’\Ehj + ad‘Ekj + BJk-Eh + aJlEkJ
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can be realized in terms of Np pairs of boson creation and annihiation operators al,,
a., t=1, .., N s=1,...,n, as follows.

” Lid n
D, = E:, a4, B, = 3:. a.a, E, = E! aLa,+ing,.  (2.2)
The sp(2N, R} positive discrete series irreps can be induced from a lowest-weight
u{ N}urep {w} ={w,@,... ws} and are denoted by {w)={w,w,...wy) Here w,, i=
1,. , N, are some integers or half-integers subject to the conditions w, Zw, = | =
wy > N {1mplying that, in the realization (2,2), ¥ must satisfy the condition n =2N).
A non-orthonormal basis of their carrier space consists of the state vectors

KoM plplhlx) =[P (D7) x|fwh}2™ (23)

:::::: PP T ) Sy S APPSR o Tmrcempd —eeme L& o amramaam i mom oo o

WNCIC |1w;u; is 4 Of lllUllUlll!dl Dadls Ul Lll.t: lUWCDL‘WUIglll UKiV} i[f@p CAITECH bpau: or
‘iIntninsic’ subspace, and P*(D') 15 a polynomial tensor transforming under the u( N)
irrep {v}={r,py .vs},wherethe »,i=1,. , N, aresome non-negative even integers
{Deenen and Quesne 1982, Le Blanc and Rowe 1987). The square bracket denotes the
u(N) coupling {w}x{r}—={h} to states of resultant u{N) symmetry specified by
{hY={h... hy} (noie that throughout this paper all couplings are assumed to be
ordered sequentially from right to left). The multiplicity label p is needed if {A} is
contained more than once in {w} x {¢¥} The label y can be any convenient set of labels
characterizing the row of {h}

The sp(ZN,R) vcs (also called partially colerent states) are parametrized by
IN(N +1) complex vanables Z, =2, b j=1,..., N, and by the discrete index =
labelling the basis of the intrinsic subspace (Deenen and Quesne 1984, Rowe 1984,
Hecht 1987). They are defined by

iz, @) =exp(3trz*D’ Hwla) (24)
where trz*D" =2,z D), denotes the trace of the N x N matrix 2*D". Ia the vcs

representation, state vectors |¥) are represemted by holomorphue funciions W(z), taking
vector values in the intrinsic subspace

Yo (2)=(z, a|¥)={{wle]exp(izD)¥). (2.5)

Operators O are represented by z-space operators [(Q), taking matrix vatues in the
mtrinsic subspace

(MO (2)]u =% Faa (O) ¥ A2) (2.6

and defined by
ircoyw)l,
=({w}a|exp(; tr z2D)O[¥)
= ({w}la[{O-+[3trzD, O]+i;trzD, [JtrzD, O11+.. }
% exp(3 tr zD)|¥). (2.7}

The vcs representation of the sp(2N, R) generators was obtained by Deenen and
Quesne (1984) and Rowe {1984). It can be expressed in terms of the variables z,, the
corresponding differential operators V, = (1+8,) 8/92,, and the intrinsic u(N} gen-
erators E,. The latter, defined by

(E,¥(2)]. =X ({wlalEHotaY¥.{2) (2.8)
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commute with 2z, and V, and only act an the 1atrinsic states (this mezas that, when
calculating matrix elements, they must be worked through to the left so that they can
act on the intrinsic bra). In a matrix notation, wherein z, V. E and & are N x N matnces
and E is the transpose of E, one can write

rp)=v
FE)=E+&  &=2V 29)
(DY =2E+Ez+(zV-N-1)z=[4A, z]
where
A=}uf(E+ &) —18~{N+1DE). {2 10)

Instead of endowing the 2-space with the vcs scalar product, with respect to which
I'({D") would be the adjoint of I'(D), 1t 15 advantageous to equip it with a vector-
Bargmann scalar product {Bargmann 1961). With respect to the latter, V is the adjoint
of z, so that a z-space orthonormal basis is eastiy constructed (Rowe 1984, Deenen
and Quesne 1985, Hecht 1987) and given by

KeXzlp{h}x) =[P (@) x {w} ;™ (211)

where P1'(z) is obtained from the polynomial tensor PI*(D) of (2.3) by substituting
2z for D'. To denote the vector-Bargmann basis functions, round parentheses are used
instead of the angular carets of (2.3}, which designate standard Hilbert space vectors.
Throughout this paper, the appearance of round parentheses in matsix elements will
mean that they are calculated by z-space integrations with the Bargmann measure and
pure intrinsic space operations, whereas the presence of angular carets will signal
standard Hilbert space operations.

The price paid for the existence of the simple z-space orthonormal basis (2.11) is
that the I' representation (2.9) is a non-unitary realization of the generators O. It can,
however, be transformed into a unitary realization

y(0y=K 'T(O)K (2.12)

via a similarity transformaiion with an operator K (Deenen and Quesne 1982, 1985,
Rowe 1984, Castafios er al 1985, Hecht 1987). Since T'(E) is already Hermitian with
respect to the vector-Bargmann scalar product, K may be chosen invariant under u( N)
50 that its matrix elements in the basis (2.11) are diagonal in {#} and independent of
x. The condition y(D") = (¥(D))" then leads to the equation

[A,2]KK =KK'z (2.13)
from which the matrix elements of KXK',
(KK "({w}, {1} o i1p = (o v} B KK (o)X vl piklx) (2.14)

can be recursively determined from KK ({w}, {»})=1, as reviewed in the appendix.
Some examples of analytic solutions for KK '({w}, {h}) are also given there.

Via some unitary matrix U({w}, {h}), every submatrix KK "({w}, {h}) can be conver-
ted to diagonal form D({w}, {h}), given by

UKK'U"=D=diag(d,, d, ..., dg) (2.15)
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where all the eigenvalues 4,, r=1,2,. . R, are non-vamishing (Rowe er o/ 1985). The
eigenstates of KK '({w}, {h}) can be labelled by index r and written as

Ka){hlyr) = |Zi [z}l bx KU Yo {(2.16)
vip
From (2.15}, one obtains
K(b tor = (dr)l."Z( U{)(le.r (K?)r.{vhﬂ = (dr}”z Ur,{»}p
K= () Uy (KD D = (d) U )y 217

Whenever the submatrix KK '({w}, {h}) is one-dimensional, one has U{{w}, {h}}=1
so that K'({e}, {h}) = K({e}, {h}).

The KK' matrix can be interpreted as the overlap matrix of the non-orthonormal
Hilbert space basis (2.3) (Deenen and Quesne 1985, Hecht 1987),

{{ew} V’}p'{h’})('““’){ v}p{h}x) = a{h'},{h}ax .X(KKT({HJ}, {h}}){v'}p' v}~ (2.18})

A Hilbert space orthonormal basis, corresponding to the vector-Bargmann orthoriormal
basis (2 18), iz given by

[KerX{bt}yr) = ‘.z:] ke who{hb) (K (o}, 131) e (2.19)

The matnx elements of an operator O in the orthenormal basis {2.19) can be
evalnated in z-space by using the vector-Bargmann orthonormal basis (2.16) and the
unitary reahization y(0) of the operator. In the case where O transforms irreducibly
under u{ N}, 1ts u{N) reduced mainx clements can be wnitten as

(e H{AT | Olwdi k)
= {oHh} v (O) (X h}r)
=T T (K'G@h {hDh el o {RHIN(0)Ke)v1o{h))

ivle {#1o"
x(K({e}, {8}))er (2.20)

where we have used {2.12). In writing (2.20), we have assumed that the u( N) coupling
is multiplicity free, should it be otherwise, the reduced matnx elements would be
iabelled by some extra index. The interest in (2.20) 1s that the reduced matrix clemenis
of O are expressed in terms of the known matrix clements of K and K™, and those
of T(0)}, which can be determined from some simple intrinsic space mairix elements
and some z-space integrals using the Bargmann measure.

3. Matrix elements of the boson operators

3.1. The bason operators in generalized vcs theory

in generalized vcs theory {(Hecht 1989, Hecht and Biedenharn 1990, Hecht and Chen
1990), equation (2 20) is applied not only to the Lie algebra generators, but also to
operators lying outside the aigebra, In the realization (2.2) of sp(2N, R), the simplest
operators of this kind are the boson creation and annihilation operators al. a.. From
their commutators with the sp(2N, R} generators

[Em GL} = ajka:rs EEU': aks] = —alkajs

[Py, ai]=0 (D}, ai]= ~8.a;, — §ual, (3.1)

[Du: HL} = §ya, -+ ajkahs [Dya a,]=0
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1t follows that for any given value of index s, they are vector operators or, in other
words, they are the components of an sp{2N, k) nreducble tenscr T transforming
under the 2 N-dimensional (non-umitary) irrep {1}. In an sp(2 N, R) = u{ M) classification
scheme, one¢ has

Ti=al  Tl.=d.=(-1'"q, (3.2)
i1 {-1}

where, tor sunplicity’s sake, we have dropped index s, which is assumed to be fixed,
and where labe! 1 (resp —i) corresponds to a u{N) weight A" (i)=(0 ..010...0)
(resp. ~A"' (i) =1{0...0— 10 ..0) with 1 (resp. — !} appearing 1n position &

Under Hermitian co-jugation, the sp(2N, &} 1rreducible tensor TV satisfies the
symimetry property

{:rgl) )‘ :(“1}z((i).!tf}“r""w}‘ul’rél) {3 3}

ghe it

where {gt5={-1}—1 or {1} according to whether {g}¥ ={i}1 or {—1}—i, and
e({i), {ehy, 5({g}, ¥} are sp(2N,R): u(N} and u{N) Henntian conjugation factors
respectively. The latier, generalizing the su(2) conjugation fautor 8(j, m)=)—m, 15
given in the present case by (Baird and Biedenharn 1964)

({1}, ) =i—1 8({—1},—1})=N—: (3.4)
while the former is defined by

e({1), {1h=0 e((1), {-1})=—-N+1 (3.5)
so as to reproduce (3 2}. Note that 8({g}, «) fulfils the coudition

({1}, H+8(—1], -1 =2¢({1h=N-1 (3.6)
where the functional

@({3}3-1%2",(1\"*’1-'2!)6}. (3.7

reducing to j for su(2) is used to define u{ V) phase factors {Hecht er al 1937).
From (2 7} and (3 1), the vcs representation I of the boson operators is given by

Mai=a! +/N+1[8x PPz M{a_)=4a.,. (384, b)

It 15 expressed in terms of two types of operators. the z-spzce polyiomial tensor P(2),
and the intrinsic boson operators @, @_,. The components of the former

PPz = (1+8,) " 1, (3.9)

are latetied by §, denoting the u( N ) weight A"¥(1, /)=(0... 020...0) with 2 in position
i whenever 1=j, or (0...010...010...0) with 1 in positions i and ; whenever i ¥ j.
The latter are assumed to commute with z and V and are defined through their left
action on ntrinsic states. This means that they must always be commuted through to
the left so that they can act on the adjacent intrinsic bra. In (3.8), the u{ N} Wigner
coefficients for the coupling of {2} and {—1} are obtained from Biedenharn and Louck
(1968). As it happens for the sp(2 N, R) generators, I'(a}) and I'(4_,) form a non-unitary
realization of the boson operators. A unitary realization v(a,), y(d_,) can be obtained
through (2.12}.

Unlike the intrinsic u(V} generators E,, which connect intrinsic bras {{w}a] only
to intrinsic kets |{w}e), the intrinsic boson operators a!, &i_, can convert ({w'la’| into
an intrinsic or non-intrinsic ket belonging to an irrep (w) #{’). Hence the first step
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1n the calculation of the reduced matnx elemenis of the boson operators consists in
evaluating those of the intrinsic operators between the purely intrinsic bras and the
permitted kets. Our first objective will therefoie be to determine for whick irreps {'},
{»}, {R}, the reduced matrix elements ({o'}|@](w){ via{h}) and ({oHo Kw){vlefh))
are different from zeéro for a given {(w), and t¥ calculaie the non-vanishing ones in
terms of {{w"Hl@|[{w}) and {{a '} a [{o}). Note that we are hare in a case where equation
(2.20) can be applied as it stands because the coupling of any wiN ) irrep with_the
irreps {1} and {—1} charactenzing the boson operator transformation properties is
multiphcity free.

3.2. Reduced marrix elemenis of the wminnsic boson operafors

From (2.20), (3 8b), and the K-matrix normaiization condition K {{w}, {o}) =1, we
obtain the relation

({w’}llﬁf!(w>{k}'f)={2) {{oHaKeXzto{PIHK {e} {1} D0, (3.10)

On the other hand, from (2.19) the left-hand side of (3.10) can be written as
({w’}iiéﬁ(w){h}r}=£ e Ha o r}p{ADIK el (D) Yatpe (3.11)

For {r} = {0}, the reduced matrix element on the right-hand side of (3.11) is simply
Hao'td|{w}), where {w'} must be of the form {w'}={w~A"(1)} with ie{l,.. , N}.
For {v}# {0}, applying (2.3) enables the reduced matrix element to be written as,

({oHdl(wd{v}p{h}
={{o'ta [z x [PHD") x fwp1""]e"
= {Z} Ul{eHvHo'H-1} {klo{uip)

x{w'le[[[&, PYHDN* x {oh]o!? (3.12)

where the I/ coefficient is a w(N) Racah coefficient 1n unitary form (Hecht ef al 1981,
1987). In the last step, use has been made of the fact that D; annihilates the intrinsic
bra {{w’}a’] to replace the coupled product [& x P*'(D")]* by a coupled commutator
[&, P*HD")]". Since P*/(D') is a polynomial of degree 3, », in' D}, it results from
(3.1) that such a coupled commutator is equal to a boson creation operator muitiplied
by some polynomial of degree ; 5, v, -1 in D;. Hence the reduced martrix element
(3.12) vanishes if {»} # {2} and, in the oppesite case, reduces to

HeHdl{e)2H{hh =vN+1 U{oH2Ho'H~1} {rH1D{ e e Ho)) (3.13)
because
[z, PPHDY]Y =VN+1al. (3.14)

1n (3.13), the irreps {&’'} and {h} must be of the form {@'} = {w+4'’(/)} and {h}=
{w+ A2, )}, where |, je{1,..., N}.

By combining these results with (3.10) and (3.11), we conclude that the only
non-vanishing reduced matrix elements of the intrinsic bosen annihilation operators
are given by

({o - AVDHE{oh ={e - AV ()}é e} (3.15)
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and
{e+AV(WHal o) e + A6 ND
=VN+1 K ({o}, {o+27( HH
x Ul{foH2Ho + AV ()H-1); {o + AP0 pHID
x {{w+A"V (0 a o} (3.16)

where, on the left-hand side of (3.16), we have drepped the label r=1, which is
uniquely determined. Finally, by using (A35), the symmetry properties of multiplicity-
free Racah coefficients (Hecht et al 1981), and some results of Le Blanc and Hecht
{1987), we obtain the following explicit expression for the reduced matrix element
(3.16):

(w+ AV} EKeHw + 223 )1

-l _ 1 12
et (g, 1y ozt é‘y]
w,te,~1—y+1+8, kg W — 1, +j—k+8,—8,

x o+ a0} & He). (3.17)

By proceeding in the same way for the bason creation operators, we obtain for the
counterparts of (3.10) and (3.11)

e'Hla"{w){h}r)
= {Z}P [({oHa e} vtp{h})

+VN+T({@}[ax PP2) 1 (ol rte A K (el b D) (318)

and
({w‘}iia"ll(w>{h}r>={§ (et [ 2} p{hHU K He}, (1)) Vg (319)
respectively.

The second term on the night-hand side of (3.18) can be transformed,
Ha'}idx PP(2) 1K) v} p{h})
= g} U{{aHZHe H-1k {PH1D
x{{w'ta'fax{ PNz} x w){r}pt R (3.20)
where
[P**(z) x[(w){r}p{bD]E"
[FPRY LR T N B

= 7 la){¥" p'{hx W e}
{uiter

In (3.21), the reduced matrix element of P*¥(2) = zis given by (Le Blanc and Rowe 1987)
(eX{rle{h}zl{eXvio{hh) = U{o{rHaH2L; {BYaivto Y {# Hzi{¥h (3.22)
where ({#'H|z]|{#}) has the value

_ _ 1/2
(v Hzl{wh = [%(vwmz— k) 1 ”——i—’-ﬁ—‘} (3.23)

=k Pk"‘I‘J +j-k'f'2
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whenever {#'} = {v+24'"(k)} for some k€ {1,..., N}, and zero otherwise. By combin-
ing these results with (3.15) and (3.16), it is clear that the only non-vanishing reduced
matrix element (3.20) corresponds te {¢} = {0} {thence {»'}={2} in (3.21)), {h}={w},
{o'}={w+A"(i)}, and that the summation over {£'} tuns over {k'} ={w+A%(y, j)}.
Hence we obtain

({w+a" ()}[d x P2) T {w})

r
=vN+1 {z K (w}, {o+ 420, 1))

x U({wH2Hw + A (DH~1); (& + A”’(!,J)}{l})]

x{w+ A 0)e f{wb. (324)
On the other hand, the reduced matrix element on the right-hand side of (3.19)
can be written as
{{w'Ha'Ke){plo{kh = (ot e'[[a" x [PPHDY) x fwp) ™1t (3.25)
Since PU'}(DY) commutes with & and for {»} # {0} annihilates the intrinsic bra {{w'}a|,
the only non.vanishing result is obtained for {#}=={0}, {h}={w}, and {w’}=
{w+A4"(i)}, and is jusi {o'Ha' [{e}).
By combining (3.18) and (3.19) with (3.24) and (3.25), we conclude that the only

non-vanishing reduced mairix elements of the mntrinsic boson creation operators are
given by

({o+A"(D}a' Ho )

x U({wH2Ho +AP(OH-1}; {w + A”’(w)}{i})]({m +aP0 e [{w}h

=[1—Y_ 1+86, wkmw,+j—k-1—5,,]
J mt'i'(l)_,"!"‘j'l'l'{“b‘,} (27 mk—wj+j—k+8k,—5u
x{{w+a¥ ()i Hob. (3.26)
The sum over j in (3.26) can be easily performed by using complex function residue
theory (Le Blanc and Rowe 1987, Quesne 1990a), so that we finally obtain

(o + 8@ Ha" oD =TT )<{w+a(“m}||af2|{m}>. (3.27)

o tw—t—k
(z),+t0;c“’i"'k+1+8m

Froi (3.15), {3.17) and {3.27), we see that the only intrinsic bras that the intrinsic
boson operatars can connect to some ket belonging to a giver: sp(2N, R} irrep {w) are
({w - A" (D}a'| and ({e+A"(i)}, | for i=1, 2,..., N. Since the z-space polynomial
tenser appearing in the vcs representation (3.8) of the boson operators cannot change
the sp(2N, R) irrep and the transition from such an irrep to another one is entirely
due to the intrinsic boson operators, we conclude that the only non-vanishing reduced
matrix elements of the boson operators are {({wMA'lrllal{w){h}ls) and
()R} @ [{wdh}r), where (') =(w — AP0, (w+AT(1)), and [k} ={h- &7}
for the former or {#'}={h+A"(j)} for the latter. In the next subsection, we shall
proceed to calculate them in terms of pure intrinsic space reduced matrix elements.
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3.3. Reduced matrix elements of the boson operators

Let us first consider the boson operator reduced matnx elements corresponding to
("= {w—A""{1)). From (2.20) and (3.8}, those of the annihilation operators are
given by

(o — A" (B = A" (N laflot b}

= Z E (Kil{{w_aﬂl(f)}s {h_A(”(f)}))r futp

{rhp {vlo
* (o~ AN e th~ AT (@) w)t vel kD
*x(K({w}, {ED ), N (328)
where
o — A" (e th — AV (HIT (@K 2hpth})
={w - A" ve{h AV DHEl X v olh}). (329

By using standard u{N) recoupling techniques and by taking (3 15) into account,
equation (3.29) becomes

(@ — A o Th ~ AV GYHIT(d) w){ v plh))
=8, m(_l)udwnwl{hd”’um—\p(iwﬂ‘"tr)})—w({hn
x Ut{vHolh—AV(1)H=1}; {klp{e - 8" (1)} p")
x{{w—AV (O} dH{wh (3.30)
where the u{N') phase factor ¢ has been defined in (3 7).
By proceeding in the same way for the creation operators, we obtain
Lo ~APap{h+ A ()} e () hln
=Y ¥ (K '{o-aAMOLE+A" (DD

{tle {5 lp

x ((w ~ 8V e e+ A () HIT @ S @i ] p{A])

A K{{e}. {hui. (331)
where
(e~ A (o' T th + AV (DHT (@) w)X{wlp{hh

=VNFT ({& - A} [k + A0}

x [l[@x P21 (M rip{h)). (3.32)
From the resulis of the previous subsection, it indeed follows that the intrinsic boson
creation operator on the right-hand side of (3.84) does not contribute to the reduced
matrix element {3.32). By changing the order of a and P'*(z) in the latter, thereby

introducing a phase factor {(—1)™ !, and by using standard recoupling techniques, we
get

(o — A"l {h+ AV (HHT(a") | (w) v}p{h})}
{w} {#} {hlp
=(-)N"'VNTFI {~1} {2} {1} ({r'Hzivh)
{w—AM0)} (v} {h+AY(Dlp'

x{{w - AV (D} fdl{eh (3.33)
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where the { | symbol 15 a u(/N} 9-type symbof in unitary form. The reduced matnx
element (3 33) has therefore been factorized into a z-space reduced matrix element of
z, whose explicit form is given in (3.23), and a pure intrinsic space boson operator
reduced matrix element.

The boson operator reduced matnx elements corresponding to {&'} = {w +A'"'(1}}
could be similarly calculated, Simpler expressions are, however, obtained through the
Hermitian conjugation of the reduced matnx elements corresponding to {w'} =

{W_A(”(l)},
o+ A AY e if YT Y1

= (—p)eHairedan- mhmrun{qn[d. lm{h}]
dim{%’}

x oA | T Kw + A" AT, (3.34)
Here dim{h} denotes the dimension of the u(N) irrep {h}, given by

dim{h}=[112' (N-DIT'T] (h,—h,+5-71) (3.35)

r=Is

while the phase factors {~1)¥#P*ettah—elhh 5nq (1)=C0aD follow from the 13
interchange symmetry property of the u( N) Wigner coefficients and from the Hermmtian
conjugation symmetry property (3 3), respectively. By collecting the resuits ccntained
in (3.5), (3.7} and (3 35), equation (3.24) can be rewritten as

(o + AV (A~ AV | Ei @b}

_ l,.ﬂr by —h+i-k IRE
=1 kll,hk Bo+y—k+1

x {a){h}rfia’f{w+ AN h— A ()} (3 36)
and

(o +AVpih+ AP (D} [a" w) hr)
et B —h -k ]"
= [kg,hk—h,+jwk—1
x((w){h}ruﬁ”(w+A“’(:)){h+A‘”(;)}r'). (3.37)

4. sp(ZN, R) > u(N) reduced Wigner coefficicnts

The Wigner-Eckart theorem with respect to sp(2N,R) > u(N} can now be used to
express the u(N) reduced matrix elements of Tih, i terms of its sp(2/V,R) triple
reduced matrix elements and sp(2N H&; ~u{N) reduced Wigner coefficients coupling

emamEm mamiae Seeman Y PP IR,

a PUbll!Vﬂ ulab“:lc SCLICY HIGP \w,a Wl.lll llﬂ: YOLLUE HICP \1,’

KoK T )} = (e MITVlenlwd{h}r (D{gHtw WA, (4.1}
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Since the pure intrinsic space reduced matrix element {{o — A" (O} d {w}), considered
in the previous section, can be similarly written in terms of a triple reduced
matrix element of T and a special reduced Wigner coefficient {w){w}; (1){~1}|{w -
AN e — AN, the former can be eliminated from the formulae and the general
reduced Wigner coefficients expressed in terms of the special one, playing the
role of a normalization constant. Apart from this unknown constant, the
sp(2N, %) 2 u(N)} reduced Wigner coefficients are therefore entirely determined by
the results of the previous section.

Since the sp(2N,R) irrep (1) is not unitary, the corresponding reduced Wigner
coefiicients do not fulfil any orthogonality refation, which would make it possible to
normalize them. Instead of choosing a somewhat arbitrary normalization convention,
as was done by Ui {1968) for sp(2, R), we shall leave it undetermined and only consider
ratios of reduced Wigner coefficients

_Qw)hlr, (1{ g} Wi}
(o) (g} [(wHo'D
This is no practical fimitation because only such ratios do appear in applications Note
that 1n {4.2), {#’}={h — A"/} or {h+A"(j)} according to whether {g} ={—1} or {1},
and {g} ={—1} or {1} according to whether (@) ={w — A"(i)} or (@ +A"'(i)).
For {&') = {w— A(i)), the results are
(@) hir; GH=1}{o =AM A - A" ()1
{e){ol (H{-1H{w — AV (Mo - AV (HD

== ‘ ; (KT ({o =AM, {h - A" (DD e
x UfrHah - AV(H-1} {klple A" (D) HK {w}, {BD) ),
(4.3)

R,, {4.2)

and

() {h}r; A1} w =AM +AY ()}
UaY{w}, (-1} — AV (Do - A (0D

=(-DVWVNFT T (Ko -AVWL (h+ AV (DD e

{vHrlop
{o} {vh {h}e ]
x {-1} {2} {1 J

{@-28V0} {¥} {(h+a"()
x ({#' Hz[[{rDK {o}, {h ) s, (44)

The remaining ratios of reduced Wigner coefficienis, corresponding to (w')=
{2+ A"'(i}), can be calculated through the symmetry relations

Yan{h}r; (=1 + AVGNTR — AV
(oMo (D1} e+ A" (e +A(DH)

- N _ c 1/2
=(—1)‘”[(H Wy~ w,+1 .k ])(H by —h+j—k )]
fe#: w,‘—w,-’rz—k 7 k;_,hk—h}‘{“j—k'}‘l

e + A% {h — AV DY (DH{1H(w){ A}
{tw +A"0) o+ 2 (- 1}H{wH o))

(45)
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Ken{h}rs D{1H(w + A"V(N{H+ AM()}r)

(ool ({1}lw +A"(IMe +870))

=(_1)'ﬂ[(nwk_a)l-HTk—l)(H hk"h,'f‘j—k )]1/7
ey Wp—w,+i—k k*lhk_h]'l']—‘k—l

o + AR A+ AV, (D=1} o) h}r)
{(w+AY (i Ne + A" (D O~ 1} e o))

(4.6)

resulting from (3 36) and (3 37)

Table 1. Ratios R of sp(2N,R}2u(N) reduced Wigner coefficsents for the coupling
{)x(1}»{w") Here ly =w+w, k=1, , N, where v, s some non-negative even integer

{4} (e R
, h+w—5—1 vz
- - N A
{~1} (ww—1) (—1) [Zm—N—l]
_ _ w2
{-1} (w+1 o) I:M.Lj]
2w
i} (er = 1) (WI)N—!rh!ww-'-N_Ji-z-Ivz
it 4 7 T —N—1
h+ta—g+1 Ve
{l} (m+1w) (*I)J*I[L]
2w

Table 2 Ratios R of sp{2ZN,R)>u(N)} reduced Wigner coefficients for the coupling
(w)yXx {1} > {w"y and some low-weight 1rreps {h} and {h'} Here p, and g,, are defined by
P =, —w,+1—5and g, =w, +o,—s—1 respectively, and S(z—j) =1 or —1 accorchng to
whether 1<y or 1>

{h} {q} (@) R
+1+4+5 H1+E
o+ A2, k)} {—1} (e~ A1) (#l).ﬂs(lwﬁ[‘hk ,k{l.l B - :k)
i ser s
[ P18 )]”1
x{ [] ——————
(“3 Pis + S,Jk —&y
- 1+3 Pts_ss)
12 - ) S Tl | i} )
{w+ &%, 13} {—1} (e + A (-1 —‘?-1+1+5u(:11_Pu
X(H P,£+1+5‘,,—5|)]U2
EL ) p;s+6;r"'8;i
F1+85, L —1—8,\ 12
{w} {i} {w—aM0N {1yt __Z(H b’)]
- s#i Pis
: (ge +1+8,+8, +8,
(£33 o _ Jaut1+8,+8, +8y
{w + 3%, &)} {t} (o + A0 86 j}_ PRTTTR

x( il ps+1+5,,+5[,‘)
LEY) Dis

2
x(n Pis— 8~ 8y )]l
g I’Jg+]+‘su+ajk -8, 8y
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Table3 Ratios R of spi4, ®) = u(2) reduced Wigner coefficients for the couphng {w +4, & —
X (1)+{a’ 41, & ~ 1) m the case where #if —w’ 15 even

) @FLe=1) e R

-1 wrhw-3 {1, B} *g[m—_—%ﬁ]m

-1 (ol w- thy, b= 1) i%ﬁ%ﬁ]n
SR NI = =
I I e = e
i (+i w2 {hy byt 1} %:ﬂ’-‘ﬁﬁ_}%ﬁ]m

i Wl w-d by 1, o) %%;—”ﬁ%ﬁ—‘m%i;ﬁ]/
B
{1} (w+d, 0§ {he+1, ks % (’"-—hz+3)(2wwr}(:hwzm—n}”z

L (b= +2H20 ~ 2020 +1)

The sp(2 N, R) = u{ N reduced Wigner coefficients under consideration have there-
fore been expressed in terms of the K-matrixz, the known reduced matrix elements of
z and sogme w{ N) §)- or 9j-type recoupling coefficients In some imporiant cases, they
can be given in very specific analytic form by taking the resulis of the appendix {or
the K-matnx into account. As examplies, the ratios R,.., defined in (4.2), are listed in
tables I-4 for the following four cases respectively:

N and {h} arbitrary, {w}= (&}

N and {@) arbitrary, {h} ={w} or {0 +A"(p, @)}, {h}={o} or lo'+ AP (s, 1)}
N=2 {mwy={w+ e~ @ol=(u'+1,o' -1, ~e even

N =2 {ww)={w+ 01, (wje)={w +1, 0 -1}, hh—e'odd

(note that here a dot over a symbol implies that this symbol is repeated as often as
necessary, for instance {&)=(w™)). The [ormer three cases are multiplicity-free,
whereas the latter corresponds to multiplicity-free {h} and multiphicity-two {h'} irreps.
In particular, it is clear that from tables 1, 2 and 4, all the sp{4, R} = u(2) reduced
Wigner coefficients relating the irreps {we), (@ +3, @ — ), and {w + 1, & — 1} are explicitly
known.

Appendix. The K-matrix elements

The (KK')-mainix ¢lements can be evaivated from KK '{{w}, {w}} =1 through recur-
sion relationships, which follow from (2 13) by taking matnx elements between two
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Table 4. Ranos R, of sp(4, R} > ul2} reduced Wigner coefficients for the coupling (w+
La=5x{ly»{w'+ 1 o' -1} in the case where hi—w' 15 odd The w(21irep (s} 15

thy~w+3, b~ o~} or {h;~o 3, i, —w +3} dccording to whether hy—w —11s even or
odd

{g:9:0 (o' +Lw'—1)  [hiAd} R

{-1} (ﬂ’*:‘i-“"g} {h—1, hy} -fK“'k{w*‘é.m—%th'"l,f!:}l),{.,,,,
XK({m*—l:,mle},“llhz})

-1} {wF+lw-D {hoh=1) AR e+ e =3, (b k= D)

x Ki{o+4 w~1% {hh})

-1} fw+de-3 {hi=Lk) Uy = k) NIk =iy =~ Wk — by Dby~ + )]
x(K({w+3, @3, (=L sh )t g
+‘hz_“’+il.)l/2(K({“’+§a‘"*%}a{hl‘“lsh:}n(ulu;—z)r}
x K Meo+i, o, {hhh

{-1} (i a—} (b=t (= 27 Y[y~ By 10 = iy + DMy — w0 = 1)1
K {w+3, o=t {h, b= 1, e
‘U’g_m+%)"2(K({m+;,w—;l\_},{h\phz_‘-“)gyl~2»z}r=‘$
x KW {w+i, w8, {hh})

{1} (w+d o3 {h b1} (=) [~ b= DRy~ b+ 1D —w + 5]
XK ' Qo tsow =3 1k, bt 1)), vy
+[h=—w+§)u2(f(71({w+%, w—-%},{hl,h,+ﬂ)],.{,l+3_‘ N
x Kilw+} o ~Y, )

{1} (w+1 w—2 {h,+1, b} (e~ b+ 2) [ty — B+ 1) h, -+ 3)h, o+3)]77°
X(K_I({W"’%s“"%},{hl"']akz”)r,{vﬁz,z-;l
e+ DYHK T ot o -3 I+ L), g o)
X K({w+1, w—3h {4}

{1t (o=  {hmrl} —(Kdetio—ih i, e, .
x K~'w+i -4 L
i1} (‘0‘"%"’*5) {h+ L o} [K({w+%,w—%},{h‘+l,hg})](,|,=,,

<K 'w+t, w1 ()

z-space orthonormal basis states (2.11). Such recursion relations can be writien as
{(Rowe 1984, Deenen and Quesne 1985, Hecht 1987)

L IAQw L D - Al i) eX» Yo Rz e) {2} 5{R})

1515
X (KK+({“’}: {h})):ﬁjﬁ,{v}p
= ¥ (KK '({oh {0 515 (X818 {0z |{eX{2}o{h}) (A1)

I
where the u(N) reduced matrix elements of z are given in (3.22) and (3.23), and

AL () =4S ik + N =2i+1) =LY v, (, +2N -21+2) (A2)

denotes the eigenvalue of the operator A, defined in (2.10), corresponding to the state
K@) vhpihby). *

For one-dimensional KK *({w}, {h}) submatrices, {»} 15 entirely determined by {h},
p is unnecessary and one may take K '({w}, {h})=K({w}, {k}). Whenever both
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KK'{{w).{h}) and KK'({w'},{k'}) are one-dimensional, equation (Al) simply
becomes

K*({e}, i) =[A({»} {A'D - AlrL {(BDIK (@), {k}) (A3)

for {h'} contained in {h}x%{2}, and {#} in {v}x{2}. Denoting {#'} and {h'} by
{+2AM(K)} and {h+ A, )} respectively, we obtain from (A2) and (A3)

K({w}, {h+ AP D =(h+ B - n+k—i—j+8)K'({w}, {k}) (A4)

In such a case, K{{w}, {k}) 1s defined as the positive square root of K*({w}, {k}) For
higher-dimensional KK *({w}, {h}) submatrices, one has to solve {Al). Then the
K({w}, {h}) submatrices are determined by diagonalizing KK ({w}, {#}) and applying
(2.15) and (2.17).

We give below some examples of results for one- and two-dimensional submatrices.

Al. The case of [h}={w+A™(, )}
This is an example of application of (A4) with {r}={0} and {#'} ={2} The result is
K{oh{o+aP(G ) =ote,—1—j+1+5, (AS)

A2. The case of (o)

All states of {w) are multiplicity-free with {} givenby h, =w+v,,1=1,. ., N. Applica-
tion of (Ad) leads to (Deenen and Quesne 1982)
(h+w—1—1)1!

Row—-i1—1)1 (AG)

K*({e} {h}) =11
A3 The case of (w+1 @)

All states of {@+1 @) are multiplicity-free with {h} given by b =@ +2,+§,,, 1=
1,. ., N, for some me{l,.. , N}. Direct application of (Ad) again leads to
(h+w—1—-1+5,"

Qe ~1—1+28)"

K({w+t o} {(hD)=]] (A7)

Ad. The case of (ww—1)

All states of (we —1) are multiplicity-free with {h} given by b, =w+2,—-8,,, 1=
1,. ., N, for some me{l,..., N}. From (A4), one obtains

o (b te—i-1-8,)!
Klow 1},{h})—1} Qe ~ i~ 1—28 )11

(A8)
AS. The case of {w+4, w—1) for sp(4, R)

This is a special case of both cases 3 and 4. Denoting kb, by b =w+v,+3;-5,,,
i=1,2, me{1,2}, one has

(h|+w“%_6m|)!!(h2+w"%_8m2)“

2 1 b =
K*({w+3 o =34 {lha}) Qo —1)1Q2w -4

(A9)
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Ab6. The case of (w+1, w—1) and hy—w even for sp(4, )

All states of {w+1, w —1) with b, - even are multiplicity-free with {», v} given by
v,=h—e, i=1,2 Application of (A4) gives (Castafios et al 1985)

(h+eo-2)Nh+o-3)1

Ko+ 1, @ =1} (i b = 20 -2) = mmrm i

(A10)

A7. The case of (w+1,w—1) and h;—~w edd for sp(4, R)

The states of (@ +1, w —1) with hy—w odd have multiphicity two and correspond to
{rivap={h-w—1,h;—w+1} or {h-~w+1, h~w—1}). The matrix elements of
KK'{({w+1, w—1}, {hh,}), obtained by solving (A1), can be written as {(Castafios et
al 1985)

. (h+o =31 b+ o —4)!!
(KK '({w+1, 0 — 15 I D e e = a1 20— Afid ey (AL

where

(hy— ha}(hy — 0 +2)
h—h+1

A(h,—mv|.h;-—m+i}‘(h,-m—l,hg—wﬂj ={2w _2)(h1 +w—2)-
ECh = ho)(hy — By +2)(hy ~ 0 + 2} (B — 0 + 12
hi - h2+ 1

(b~ B+ 2)(hy—w+1)
h,—hot1

A{h|—w—!,h:*—ww—l}.{hlfm+l,h;—m—l} =

A{h,7m+1.h3*-w—l}.{’l|—w+l,h3—w—i} = {20~ 2} .+ o —3)— (A12)

The eigenvalues of the 2x2 matrix KK ({w+1, @ —1}, {hho}) are given by

(hi+o=3)11(h+o-4!
o= e T (20 =3)(hy+ hy) + 4w — 1){w —2) £ A] (A13)

where d, (d,) corresponds to the + (—) sign, and
A=[4{w ~ 1w —2)(h, — h,)(h, — ho+2) + (b, + )" (A1)

The {real} unitary matrix U converting KK'{{w +1, @ — 1}, {hh5}) to diagonal form
can be written as

U=(-—cos¢> sin d)) (A15)

sing cosod

where
- _(2"-""3)”11_"2}(]11"h:+2)“hl—hz+(h,—hz'i'l)A]”z Al
Sm‘b_[ 2l —h+ DA (A16)
¢_[ 200~ b))l — ha 2}y —w+ 2} Ay~ w+ 1) ]w
cos ¢ = (b, — hy+ VA[—(20 — 3) (1, —hy) (B, = ho+2) — b, — ha+ (b, — by + DAL

The 2x 2 matricas Klfm+1 w—1  {hhWand K 'W{w+1 e—1}
+ ilaese WM P Ry A FrowERis 2L N ’ -

Ll L AL Fiwwd & xfy LTHiTeT i

obtammed by applying (2.17).

{1, h;}) are finally
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