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operators and of sp(ZN, R) 3 u(N) reduced Wigner coefficients 
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Abstract. sp(2N. R I  2 "(NI reduced Wt~ner  coefflcienir coupling a positwe dwcrele sene5 
u n m q  irreducible representation with the 2N-dr"smnal non-unitary irreduc>hlr rep- 
resentation charactenred by (I) are evaluated by makmg use ofgeneralmd vector coherent 
stale techniques General formulae are uven m terms of the K-matnr elements of vector 
coherent state theory and of some u(rNi 61- or 91-type recoupltng coetiicrentr. Enplrdt 
analytic expressions are obtained in some importan1 special cases Such re6uIts should 
allow a recent determination of wspIZN,,R)= w(Ni3rpfZN.Wi and osp(Pl2N.R) matnx 
representations to be completed. because both the w(N) generators and the orp(P/ZN, a) 
odd generators transform under the sp(ZN, W) i m p  (I, 

1. Introduction 

The non-compact symplectic algebra sp(ZN, R) being the main component of the 
N-dimensional harmonic oscillator dynamical algebra (Hwa and Nuyts 1966, 
Moshinsky and Quesne 1971, Wybourne 1974) appears in many physical problems. 
The harmonic oscillator eigenstates carry infinite-dimensional unitary irreducible rep- 
resentations (irreps) of sp(?N, R) belonging to the positive disciete series. However 
physically relevant operators usually transform under some finite-dimensional nou- 
unitary irrep. To exploit the Wigner-Eckart theorem with respect to sp(ZN, W), one 
therefore needs the sp(2N, R) Wigner coefficients coupling a positive discrete series 
unitary irrep with a finite-dimensional non-unitary one to give another positive discrete 
series unitary irrep. The latter however remain unknown, except for the case where 
N = 1, for which they coincide with some su(1, 1) Wigner coefficients determined many 
years ago by Ui (1968). 

Finite-dimensional non-unitary irreps also play an important role whenever 
sp(2N, R) is embedded into some larger finite-dimensional algebra g. In such a case, 
they indeed govern the transformation properties of the additional generators 
under sp(ZN, R), so that a complete determination of the matrix irreps of g in a 
g 3 sp(ZN, R) 3 u(N)  basis requires an explicit knowledge of the previously mentioned 
sp(ZN, R) Wigner coefficients. Two examples of such embeddings were recently studied 
in detail, corresponding to g = wsp(2N,W)- w(N)Bsp(ZN, R) (Quesne 1990a) and 
g=osp(P/ZN,R), P = 2 M o r 2 M + 1  (Quesne 1990b),respectively.Herew(N)denotes 
the Heisenberg-Weyl algebra generated by N pairs of boson creation and annihilation 
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operators (and the unit operator), and osp(Pi2N. S) the onhosymplectic superalgebra 
whose even subalgebra is so(P)fBsp(?N, S) In both cases, the additional generators 
are vector operators with respect to sp(ZN,S), i.e. they transform under the 2N- 
dimensional irrep (1). 

The aim of the present paper is to determine the sp(ZN, Ut) Wigner coefficients 
which couple a positive discrete series irrep with the irrep (1). For such a purpose. we 
shall make use of the vector coherent state (vcs) theory (Deenen and Quesne 1984, 
Rowe 1984) and its associated K-matrix technique (Rowe 1984, Castatios et al 1985, 
Deenen and Quesne 1985, Hecht 1987, Rowe el a/ 1988). vcs theory is indeed not 
only useful for determining explicit matrix representations of many Lie algebras and 
superalgebras, but it is also applicable to the Wigner-Racah calculus of higher rank 
algebras (Hecht et al 1987, Le Blanc and Hecht 1987, Le Blanc and Biedenharn 1989). 
Very recently, it has been generalized to include the vcs realizations of simple operators 
Lying outside the algebras, thereby providing a very powerful tool for a detailed 
evaluation of their matrix elements and thence of Wigner coefficients (Hecht 1989, 
Hecbt and Biedenham 1990, Hecht and Chen 1990). 

So far, the generalized vcs theory has been applied to the calculation of g 3 h 
reduced Wigner coefficients, for which the reduction of a product of g (resp. h )  irreps 
into a direct sum of g (resp. h )  ineps was known beforehand, namely u ( N )  3 U( N - I )  
(Hecht er al 1987, Le Blanc and Hecht 1987, Le Blanc and Biedenham 1989, Hecht 
and Biedenharn 1990), sp(4) = so(5) 3 u(2) (Hecht 1989), and sp(6) 3 u(3) reduced 
Wigner coefficients (Hecht and Chen 1990). In the present paper, we are confronted 
with a more challenging case. except when N = 1, no information is indeed available 
about the decomposition of the product of a positive discrete series unitary irrep with 
a vector irrep of sp(ZN, W). However, the generalized vcs technique will prove a very 
powerful tool for determining such a branching rule. As in its previous applications, 
it can be used to express the sp(2N,R) 3u fN)  reduced Wigner coefficients in terms 
OF the known K-matrix and of some u ( N )  6j- or 9j-type recoupling coefficients. In 
vanous important cases, very explicit analytic expressions are therefore obtained for 
these coefficients 

in  the following section of this paper, the sp(2N, W) 3 U( N) vcs theory 1s briefly 
reviewed. Then, in section 3, the generalized theory- is applied to evaluating the matrix 
elements of boson operators. Finally, in section 4, general formulae for the correspond- 
ing sp(2iv’. Si su(iv’i  reduced Wigner coeEcienis are determined, and some simpie 
examples are worked out in deteil. 

2. Vector coherent state theory of sp(ZN, R)=u(N) 

The sp(2N,S) algebra is spanned by the u(N)  subalgebra generators E,=(i&)‘, i, 

j = I , .  . . N, a set of commuting raising operators 0; = Dj,, i, j = ?. :. , N, and the 
corresponding Hermitian conjugate lowering operators 0, = D,, = (D;,)’, I, j = 1,. . . , N 
(Deenen and Quesne 1984). Such operators, whose non-vanishing commutators are 
given by 

[E,, h i 1  = 6,kEd - 6,,E, 

[Ey, DLl=6;&:,+S,DL [E,, DUI = -&D,, -&& (2.1) 

DLI = 6,&q + &E, + a,&, + 6,&, 
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can be realized in terms of Nn pairs of boson creation and annihilation operators a:<, 
a,T. t = 1, . . , N, s = I , .  . . , n, as follows. 

E,, = ahjs+iti8y. (2.2) 

The sp(2N. R) positive discrete series irreps can be induced from a lowest-weight 
ulN)irrep { m } = { w d m  2 . . . w c }  and are denoted by ( w ) = ( w l o  2. . .o , )  Here U,, i= 
I , .  , N. are some integers or half-integers subject to the conditions w , 2 w z a  , P 
w,- > N (implying that, in the realization ( 2 2 ) .  n must satisfy the condition n s 2 N ) .  
A non-orthonormal basis of their carrier space consists of the state vectors 

(2 3 )  
"IICIC ,,",I., 13 all Vll l lYllYIIl ' . l l  "n>l> Y L  L l l C  ruwcaL-Wc'grrr Ut'", 'rrrp SalllL-l sprcr  or 
'intrinsic' subspace, and P<"'(D') is a polynomial tensor transforming under the u(N) 
irrep{vl={u,u, .U&], wherethe U,,;= 1 , .  , N,aresomenon-negativeevenintegers 
(Deenen and Quesne 1982, Le Blanc and Rowe 1987). The square bracket denotes the 
u(N1 coupling { ~ l X { u } + { h )  to states of resultant u ( N )  symmetry specified by 
i h l = ( h , h , .  . h N J  (no:e that throughout this paper all couplings are assumed to be 
ordered seaurntiaily from right to left). The multiplicity label p is needed if { h )  is 
contained more than once in ( w }  x {U} The label x can be any convenient set of labels 
characterizing the row of { h }  

The sp(2N,iw) vcs (also called partially coherent states) are parametrized by 
& N ( N + l )  complex vanables z,, =z,,. i, j =  1,. . . , N, and by the discrete index a 
labelling the basis of the intrinsic subspace (Deenen and Quesne 1984, Rowe 1984, 
Hecht 1987). They are defined by 

(2.4) 
where trz*D'=XC,$DJ, denotes the trace of the N x  N matrix z*D'. In the vcs 
representation, state vectors 1") are represented by holomorphrc functions P(d, taking 
vector values in the intrinsic subspace 

(2.5) 

Operators 0 are represented by z-space operators F(O), taking matrix values in the 
intrinsic subspace 

[r(o)wz)i. =I r,, (o)'Y,.(zI (2.6) 

SF, 
Or,= a;*ar, D., = Z a&,. 

r - ,  I - )  

l(w){u)p{hlx) =[P"'(O') x I ~ o J } ) ~ ~ ' ~ '  
... L . _ ^ i , . . l ^ . i . _  ~- - " ~ ~ - - ~ ~ - - " * ~ " - . " ~ ~ . ~ - ,  " L ..., L,\ ...._ ... 2 ~ 

12, a )  = exp(f tr z*D' f / rwb)  

Ym(z)  = (z, a ! P ) = ( { w ) a l  exp(! tr zD)IY). 

and defined by 

[rco)w(z)im 
= ( { w } u l  exp(itrrD)OIP) 

=( (m}a / (Oi [~ trzD,O]+~[ f trzD, [ f t rzD,  O]l+ . . .  ) 
x exp(4 tr zD)JP). (2.7) 

The vcs representation of the sp(2N, R) generators was obtained by Deenen and 
Quesiie (1984) and Rowe (1984). It can be expressed in terms of the variables z,,, the 
corresponding differential operarors V, = (1 +S,) afaz,, and the intrinsic u(N) gen- 
eretors E,. The latter, defined by 

[E,,Y(Z)L = z: ({o)alE,l{w}a?Yd(z) (2.8) 
II' 
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commute with z,, and P,,, and only act on the intrinsic states (this meanc that, when 
calculating matrix elements, they must be worked through to the left so that they can 
act OF the intrinsic bra). In a matrix notation, wherein z, V, E and B are N x N matnces 
and E is tt.e transpose of E, one can write 

T(D)=V 

T(E) =E+ 8 $=zV (2 9) 

T(Q'j = zk+Ez+ (zV - N - 1 jz = [,I, z] 

where 

A = f t r [ ( E + B l ' - ~ ~ ~ - t ( N + l ) B ] .  (2 10) 

Instead of endowing the z-space with the vcs scalar product, with respect to which 
r(D*) would be the adjoint of T(Q), it is advar,!dgeous to equip it with a vector- 
Bargmann scalar product (Bargmaun 1961). With respect to the latter, V is the adjoint 
of z, so that a z-space orthonormal basis is easiiy constructed (Rowe 1984, Deenen 
and Quesne 1985, Hecht 1987) and given by 

I(w){.)pIh)x)= [P" ' (Z)X  l t W ~ ~ I ~ ~ * J  (2 11) 

where PfV1(z) is obtained from the polynomial tensor P'":(D') of (2.3) by substituting 
z for D'. To denote the vector-Bargmann basis functions, round parentheses are used 
instead of the angular carets of (2.3>, which designate stankdrd Hilbert space vectors. 
Throughout this paper, the appearance of round parentheses in mat:ix elements will 
mean that they are calculated by z-space integrations with the Bargmann measure and 
pure intrinsic space operztions, whereas the presence of angular carets will signal 
standard Hilbert space opera*. dons. 

The price paid for the existence of the simple z-space orthonormal basis (2.11) is 
that the r representation (2.9) is a non-unitary realization of the generators 0. It can, 
however, be transformed into a unitary realization 

~ ( 0 )  = K - ' r ( O ) K  (2.12) 

via a similarity transformation with an operator K (Deenen and Quesne 1982, 1985, 
Rowe 1954, Castaeos et al 1985, Hecht 1987). Since T(E) is already Hermitian with 
respect to the vector-Bargmann scalar product, K may be chosen invariant under U( N) 
so that its matrix elements in the basis (2.11) are diagonal in {h) and independent of 
x. The condition y(D') = (y(D))' then leads to the equation 

[A, z ] K K ' =  KK'z (2.13) 

from which the matrix elements of KK', 

( K ~ ' ( t ~ f , I h ) ) ) c , ~ i , ~ , c . ~ , = ( ( ~ ) I ~ ' ) ~ ' t h l ~ I K K ' l ( w ) ( ~ ) ~ ~ h ) ~ )  (2.14) 

can be recursively determined from K K t ( { w } ,  (0 ) ) -  1, as reviewed in the appendix. 
Some examples of analytic solutions for KKt({o), { h ) )  are also given there. 

Via some unitary matrix U ( { w ) ,  { h ) ) ,  every submatrix KK'({o),  { h ) )  can he conver- 
ted to diagonal form D ( { w ) ,  { h ) ) ,  given by 

L'KK'U'=D=diag(d,,d, ,_... d R )  (2.15) 
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where ail the eigenvalues d., r = 1.2 , .  . , R are non-vanishing (Rowe et ul 1985). The 
eigenstates of K K ’ ( { o } ,  ( h } )  can be labelled by index r a rd  written as 

I(w)jh}xr) = 1 I!w)(u}p.(h}xf(Ui)l,Iv,,. (2.16) 
l ” l P  

From (2.15), one obtains 

KI..,,= (d,)”YU+){”IP,, (Ki). , juip = (d,)*”U,,jLin 
(2.17) 

(K-’),,jPip = (dr)-”2Ur,{,, ,  
Wheneve; the submatrix KK’({w) ,  { h } )  is one-dimensional, one has UC(w}, { h ) ) =  I 
so that IC’({@), j h } )  = X({o}, ( h ) ) .  

The KK’ matrix can be interpreted as the overlap matrix of the non-orthonormal 
Hilbert space basis (2.3) (Deenen and Quesne 1985, Hecht 19871, 

( ( ~ ~ ) ~ ~ ’ J ~ ’ ( ~ ~ X ‘ I ( ~ ) ~ ~ I F { ~ I X )  = S{w,,r,tSx ,JKK’((w}, i h } ) ) j v , t p ,  (2.18) 
A Hilbert space orthonormal basis, corresponding to the vector-Bargmann orthonormal 
basis (2 16), is given by 

l(w)(6}xr) = I(w){ u}p{h}x) ( (K ‘({o). {h} ) ) - ’ ) { , i9 , , .  (2.19) 

The matnx elements of an operator 0 in the orthonormal basis (2.19) can be 
evaluated in r-space by wing the vector-Bargmann orthonormal basis (2.16) and the 
unitary realization y ( 0 )  of the operator. In the case where 0 transforms irreducibly 
under u(N), its u(N)  reduced matrix elements can he wntten as 

((K’)-’){st9., = (d,)~i”(U’){,tp,p. 

{YIP 

((~‘)(~i ‘)r ‘ l l~l l(~)(h}r) 
= ((o‘)(h’~r’llr(o)ll(w)Ih}r) 

= 1 Z (K- ’ ( (o ’ } ,  ( ~ ‘ } ) ) , , , i ~ ~ i ~ ~ ( ( ~ ’ ) ~ ~ ‘ l ~ ’ ~ ~ ‘ } l l ~ ( ~ ) I I ( ~ ) ( ~ } ~ ( h ) )  
l”)P I V ’ i P ’  

x (K((w1, {h})){ulp,r (2.20) 
where we have used (2.12). In writing (2.20), we have assumed that the u(NJ coupling 
i s  multiplicity free; should i: be otheiwise, ?he reduced matrix elements would be 
labelled hy some extra index. The interest in (2.20) is that the reduced matrix elements 
of 0 are expressed in terms of the known matrix elements of X and K-’, and those 
of r(O), which can be determined from some simple intrinsic space matrix elements 
and some z-space integrals using the Bargmann measure. 

3. Matrix elements of the boson operators 

3.1. The boson operators in generalized vcs theory 

In generalized vcs theory (Hecht 1989, Hecht and Biedenham 1990, Hecht and Chen 
1990), equation (2 20) is app!ied not only to the Lie algebra generators, but also to 
operators lying outside the algebra. In the realization (2.2) of sp(2N,R), the simplest 
operators of this kind are the boson creation and annihilation operators a l .  a,s. From 
their commutators with the sp(2N, W) generators 

[E,,, aZ1= 8 , d ,  
[ D 6 , a L I = o  LDT, a d  = - S , @ : I - S , d s  (3.1) 

[U,,a~,]=S,xa,,+6,,a,, [%ax.l=o 

[Ey, a d  = -S,@,, 
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it follows that for any given value of index s, they are vector operators or. in other 
v.ords, :hey are the components of an sp(2N, iw) irreducible tensor T"' transforming 
underthe 2N-dimensionat (non-unuary) irrep(1). Inan sp(2N.W) 3 u(N) classification 
scherr.e, one has 

(3.2) j-11) 4 - 1  T$;.= a: f-,,. >=6.,=(-1) a, 

where, for stmplicity's szke, we have dropped index s, which is assdined io be fixed, 
and where label I (resp - i )  corresponds to a u(N) wight  A"'(i) = (0 . .011,. . .6)  
(resp. -A"'(i) = ( 0 . .  . 0- !O . .O) with 1 (resp. - 1) appearing in position 1. 

Under Hermitian cr-jugntion, the sp(2N, %j irreducibli: tenwr 7"' satisfies the 
symmetry property 

(3 3) = l ~ ~ ~ . l ~ l ~ ~ ~ ~ ~ ~ ' . ~ l ~ i !  (c;\*j' = (-1) i 4 1 i  

where { $ } < = { : : : - E  or {llr accordtng to whether {q1u-{l)i  or {-l}-i, and 
E ( ( i ) ,  {q]J, S ( { q } ,  K )  are sp(2A:R): u(N) 2nd u<N)  Hermitian conjugation factors 
respectively. The latter. generaliziq the su(2) conjugation fiL:or S ( j ,  m) = I  -m, is 
given in thc present casz hy (Baird and Biedenham 19641 

8({1), i j  = i - :  a({-1). -1)zN-i (3.4) 

d(1j,W)=~ €((1), i-1)) = - N + l  (3.5) 

while rhe foriner is defined by 

so as to reproduce (3 2). Note that S ( { q ] ,  K )  fulfils the coadition 

S({l), i)+S(i-l;, -1)=2p({l})= N-1 (3.6) 

where the functioqal 

d { q } ) = i I  (N+1-2r)qr (3.7) 

reducing to] for su(2j is used to define u(N) phase factors (Hecht et a1 1937). 
From (2 7) and (3  I), the vcs representation r of the boson operators is given by 

f(aT) = a ! + ~ X 7 [  6 x  P ( ~ ~ ( Z ) ] $ ' ~  r(&,) =&,. (3.8a, b)  

It is expressed interms of two types OF operators. the z-sprce polyoomial tensor Pt2'(z), 
and the intrinsic boson operators a:, &,. The components of the former 

P',2'(ZI = ( I + & , ) - '  -:,, (3.9) 

are labelled by g, denoting the U( iVj weight A'''(< j )  = (0. . ,020. . . 0) with 2 in position 
i whenever I = j ,  or (0.. .010.. .020.. . 0) with 1 in positions i and J whenever i # j. 
The latter 3re assumed to commute with z and V and are defined through their left 
action on intrinsic states. This means that they must always he commuted through to 
the left so that they oan act on the adjacent intrinsic bra. In (3.8), the u ( N f  Wigner 
coefficients for the coupling of {2} and {-1) are obtained from Biedenharn and Louck 
(1968). As it happens for the sp(2N, W) generators, and r(&,) form a non-unitary 
realization of the boson operators. A unitary realization ?,(a:), y ( L , )  can be obtained 
through (2.12). 

Unlike the intrinsic u(Ni generators E,,, which connect intrinsic bras ({w}a'l only 
to intrinsic kcts I{o}a), the intrinsic boson operators a:, 6-, can convert ({w')a'l into 
an intrinsic or non-intrinsic ket belonging to an irrep (U)#(") ,  Hence the first step 
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in the calculation of the reduced matrix element5 of the boson operators consists in 
evaluating those of the intrinsic operators between the purely intrinsic bras and the 
permitted kets. Our first objective will therefoie be to determine for which iereps ( w ’ } ,  

(4, (h ) ,  the reduced matrix elements ({o’)li~ill(w)(u)P(h}) and ( ( o ~ ~ l r m t ~ ~ ( w ) { , v ) p ( h ) )  
are different from zero for a given (e), and- ie  calcolate the non-vanishing ones in 
terms of((o’}~lall{w))and((o’)l/a’l/(o)). Note that wearsherein a w s e  whereequation 
(2.20) can be app!ied as it stands bc:ause the coupling of anyriPlf-irrep with-the 
irreps 11) and (-1) charactenzing the boson operator transformatirm~-,ioi;enies i s  
multiplicity free. 

3.2. Reduced matrix elemenrs of the mtnnsic boson operators 

From (2.20), (3 8 b ) ,  and the K-matrix normalization condition IC({@), { w } ) = I ,  we 
obtain the relation 

(Io’}llWo)(hl.r)= I: ( { w ‘ ) l l ~ l l ( o ) ( ~ } ~ { ~ } ) ( ~ ( { o } ,  Ih))), , l , , .  (3.10) 
I V I P  

On the other hand, from (2.19) the left-hand side of (3.10) can be written as 

({o‘}llEll(o){h~*) = 1 (fo’)lldll(~)(Y)p{h))((KttlW). ( h } ) ) - ’ ) w n . , .  (3.11) 

For ( v }  =(O}, the reduced matrix element on the right-hand rlde of (3.11) is simply 
( { w ’ ) ~ ~ i ~ ~ { o ) ) ,  where (w ’ }  must be of the form { w ’ } = ( w - A ‘ ’ ’ ( t ) }  with i e ( l , . .  , N I .  
For (v} # {O}, applying (2.3) enables the reduced matrix element to be written as. 

(LIP 

((W’llldll(w;(v)P(h)) 

= ((w‘}a’l[Z x [P‘”’<Dt) x I{w))]”’”]~?’’ 

= X U((o}(4{4{-1}; {h)pl&’) 
(P!”’ 

x ({o’)a’l[[&, P(’!(D’)](*’x I(w))]f‘”’ (3.12) 

where the U coefficient is a u(N)  Racah coefficient in unitary form (Hecht el at 1981, 
1987). In the last step, use has been made of the fact that Di annihilates the intrinsic 
bra ({o’)Q‘~ to replace the coupled product [; x P{”’(Di)](*! by a coupled commutator 
[a, Pc’l(D’)]‘‘! Since Pc”r(Di) is a polynomial o f  degree f Z, v, in‘Di,  it results from 
(3.1) that such a coupled commutator is equal to a boson creation operator multiplied 
by some polynomial of degree f E, v. - 1 in Di. Hence the reduced matrix element 
(3.12) vanishes if ( v } # ( 2 )  and, in the opposite case, reduces to 
({o’) l l i l l (w)!iHh))  =m U ( ( w H 2 H “ H - 1 ~ ;  ( h } { l ~ ) ( ~ o ’ } l l ~ ~ l l ( ~ ~ )  (3.13) 

because 

[Z, P c z l ( D i ) ] : ” = m  a: (3.14) 

In (3.13). the irreps (0’) and (hi must be of the form {w’)={w+’A‘’ ) ( i j )  and { h } =  
( w + A ~ ” ( i , j ) ) ,  where i, je{l ,  ..., Nl.  

By combining these results with (3.10) and (3.11), we conclude that lhe only 
non-vanishing reduced matrix elements of the intrinsic boson annihilation operators 
are given by 

(3.15) ( (U -, A ‘ ’ ) ( i ) } ~ ~ 6 ~ ~ { o ) )  =(Iw  -A”’(l))l/Zll{wI) 
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and 

( { w  +A")(1)}1161/(o){w +A"'(i,j)}) 

= ~ K - ' ( { o ) , { o + A ' ~ ' ( i , j ) } )  

x U((o){2}{o +A"'( I )I{- 11; {o + AI2'( I, J )}{ 1)) 

x({o +A'i)(l))lluTll{o)) (3.16) 

where, on the left-hand side of (3.16), we have dropped the label r = l ,  which is 
uniquely determined. Finally, by using (AS), the symmetry properties of multiplicity- 
free Racah coefficients (Hecht et al 1981). and some results of Le Blanc and Hecht 
(1987), we obtain the following explicit expression for the reduced matrix element 
(3.16): 

( { w  + A'*)(i)}~/tull(o){o + A'"(i, j ) } )  

- - (-I)'-' 01 - o, +J - k - 1 - 
o.+w, - 1 - I +  1 +  6, x d I  ox -0, +I  - k +  Sk, - 8, 

(3.23) 
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whenever{u')={u+ZA"'(k)~ forsome k s { l ,  ..., N),andzerootherwise. Bycombin- 
ing these results with (3.15) and (3.161, it is clear that the only non-vanishing reduced 
matrix element (3.20) corresponds tr, {U) = IO) (thence { v') = {2) in (3.21)), { h }  = {w} ,  
{w')={o+A"'(i)}, and that the summation over {h')  tuns over {h'}={w+A(' ) (~ , j ) } .  
Hence we obtain 
( {U + A " ' ( I ) ) ! ~  x P * k ( z ) ~ " ~ ! { ~ ! )  

r 

= m ' C K  2({w) ,{w+A'2)( i ,~) ) )  1, - 

x U2({w}{21(w +A"'(O){-ll; { ~ + A " ' ~ i , ~ ) ) ( l ) ) ]  

X ( { w  +A"'(r!)l~Q'!ilw)). (3 24) 
On the other hand. the reduced matrix element on the right-hand side of (3.19) 

can be written as 

( { w ' ) / a  '][(et){ v}p{k} )  = ((w'lu'l[a' X [P'"(D') X l{w))]"hk]$'l. (3.25) 
Since P'Ll(Dt)  cnmmutes with a' and for {U) it (0) annihilates t te intrinsic bra ({w')u'l, 
the only non-vanishing result is obtained for (v )={O) ,  { h ) = ( w J ,  and {U ' }=  

{w+Ac'l( i j i ,  and is just i{w'}ila'il{o}j. 
By combining (3.18) and (3.19) with (3.24) and (3.251, we conclude that the only 

non-vanishing reduced matrix elements of the Intrinsic boson creation operators are 
given by 

(Io +A("( i )~ lb 'I l {w~)  

= r1 - ( N +  l )  2 p(pd) ,  pd+p(!,;)J) 
L 
x U2({w}{2}{w +A"'( i)H- 1); ((0 + A'2'( i, I ) } {  1 111 ( { w  +A"'( 1 )tii at  ll{w)) 

1 wk - w, + j -  k - 1 - S,, 
J mz +a1 - i-j+ 1 + S ,  wJ wk - w, + j -  k+Sk, - S ,  

n =[1-1 I f s ,  __ 

x ( { o + a ( ' : ( i ) j i i n * i i { w ~ .  (3.26) 

The sum over j in (3.26) can be easily performed by using complex function residue 
theory (Le Blanc and Rowe 1987, Quesne 1990a), so that we finally obtain 

,.--- I. .C1 ,? 1-1 ^__I ,? 1?\ --- .LA. .L  ̂ ~..,.. :...-:-":-I.-"" .I.̂* *I.- :..&A"-:- 
rLVIII \ 3 .1JJ ,  (3.11) ilUU \J .L I ) ,  W S  SSC: Uldl LUG VU1y l l l l t l l lJLC Y L d D  L U d L  tllr 111111IIDLL 

boson opentors can connect to some ket belonging to a giver. sp(2N, R) irrep (0) are 
( (w  -A('l(i))apl and ({w+A("(i)}J for i =  1, 2,. . . , N. Since the z-space polynomial 
tensor appearing in the vcs representatton (3.8) of the boson operators cannot change 
the sp(2N.R) irrep and the transition from such an i m p  to another one is entirely 
due to the intrinsic boson operators, we conclude that the only non-vanishing reduced 
matrix elements of the boson operators are ((~'j{h'Jr'llall(m){~}r) and 
( ( w ' ) { h ' ) r ' ~ ~ u r ~ ~ ( w ~ { k } r ) ,  where (w')=(w -A(i)(i)), (o+A"'(i)), and (h') = { h  -A'"(j)) 
for the former or {h')={h+A'')(j)} for the latter. In the next subsection, we shall 
proceed to calculate them in terms of pure intrinsic space reduced matrix elements. 
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3.3. Reduced nerrix elemenis of the boson operarors 

Let us first consider the boson operator reduced matnx elements correspondlng to 
( W ' ) = ( W - A " ' ( I ) ) .  From (2.20) and (3.86).  those of the annihilation operators are 
given by 
( (w -A"'( I ) ) { h  - A " ' ~ ~ ) ) r ' ~ ~ ~ I ~ ( ~ ) { ~ i ) r )  

= z Z ~ ~ ~ ' ( ( ~ ~ A ' ' ' ( I ) } , { " A " ' ( J ) ) ) ) ,  I , . ) ~ '  
1.b 1-1LI 

x ( ( w  -A"'(i)){u'lp'{h - A"'( j ) ) l l ~ ( a ) i l ( w ) ~ ~ ) ~ { h l )  
x ( K ( { o ) ,  {/l)))lL~l"r < ( 3  28) 

where 

((0 -A"'( I)){ v')p'{h - A"'(./))l lU~)ll<w){ u l p { h ) f  

= ( ( w  - A ( ' ]  (if){u'1p'{h - A " ' ( r ) ) ~ ~ a l ~ ( ~ ) { u ) p i h ) , .  (3  29) 

By uslng standarc5 u(N) recocpllng techniques and by taklng (3 15) into account, 
eqoation (3.29) becomes 

( ( W - A " ) ( i ) ) ! v ' M h  - A " ' ( ; ) ~ l l r ( ~ ) l l { W ) { ~ } p { ~ } )  
- - sl, ~ ~ , , ~ ~ ~ ~ ~ ~ ~ l ~ ~ l + ~ ~ l h - ~ " ~ ~ ~ ~ l ~ - ~ l l ~ - ~ " ~ ~ ~ l ~ ~ - ~ l i l ~ ~ l  

x U({v){o){h - A " ' ( J ) P I ) ;  {hJp{o - A " ' ( ~ ) ) P ' )  
X ( i w  - A " ' ( I ) ~ I I ~ I I { w ~ )  (3.30) 

where the u ( N )  phase factor $o has been defined in (3 7). 

( (0 -a"'(i))Ih+A"'(j)}r'Iia'Il(w)(h)r) 

By proceeding in the same way for the creation operators, we obtain 

= C 1 ( ~ ~ ' ( { W - A ' ' ' ( I ) } , { / ~ + A ' ' ' ( ~ ) I ) ) , ~ . , ~ ~ ~ ~  
I i I P  i. ID 

x ( (0 - A ~ " ( ~ ) ) ~ U ' ~ P ' { ~ ~ + A ~ ' ' ( J ) ~ ~ ~ ~ ( ~ ~ I ~ ~ ( ~ ) ~ ~ } P { ~ ~ )  

x(K(f-1. w ) ) ) , L l p , r  ( 3  31) 

where 

((0 -A'"(I)){ u?p'{h + A " ' ( ~ ) ~ ~ ~ ~ ( Q t ) ~ ~ { w ) { U ) P { ~ ) )  

=JNTT((o-A"'(i))(u'}p'Ih +AcL'(j)}  

X 1 / [ 6 X  P ' ~ ' ( Z " ' ' ~ ~ ( W ) { ~ ) P ( ~ ~ J .  (3.32) 

From ths resulrs of the previous subsection, it indeed follows that the intnnsic boson 
creation operator on the right-hand side of (3 .8a )  does not contribute to the reduced 
matrix element (3.32). By changing the order of a and P'"(r) in the latter. thereby 
introducing a phase factor (-l)N-', and by using standard recoupling techniques, we 

((0 -A"'( i ) ){u')p'{h + A " ' ( j ) } l l ~ ( a ' ~ ~ ~ ( ~ ) { ~ ~ p ( ~ ) )  
{ 4 

= ( - l ) N - v R x  (-1) (2) 
{w -At!1 ( 1 ) )  {U') I ~ + A " ' ( J ) ) P '  

get 

{;;; ] ({.')ll4l{4) 

(3.33) 
1 tu) 

x (Io - A 1 l ) ( ~ ) } l l ~ l l b l )  
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Since the pure intrinsic space reduced matrix element ( {w - A " ' ( I ) ~ [ ~ Z ~ ~ { ~ ] ) ,  considered 
in the previous section, can be similarly written in terms of a triple reduced 
matrix element of T"'and a special reduced Wigner coefficient ( (w){w) ;  (l){-l}ll(w - 
A"'(i))(o -A'"(i)]), the former can be eliminated from the formulae and the general 
reduced Wigner coefficients expressed in terms of the special one, playing the 
role of a normalization constant. Apart from this unknown constant, the 
sp(2N,W) 3 u(N) reduced Wigner coefficients are therefore entirely determined by 
the results of the previous section. 

Since the sp(2N,W) irrep (1) is not unitary, the corresponding reduced Wigner 
coeliicients do not fulfil any orthogonality relation, which would make it possible to 
normalize them. Instead of choosing a somewhat arbitrary normalization convention, 
as was done by Ui (1968) for sp(2, W), we shall leave it undetermined and only consider 
ratios of reduced Wigner coefficients 

This is no practical iimitation because only such ratios do appear in applications Note 
thatin (4.2), ( h ' ) = ( h - A " ' ( j ) ] o r { h + A " ' ( j ) }  according to whether{q]={-l]or{l}, 
and (q]={-l) or {I] according to whether (w')=(w-A1' ' ( i ) )  or (m+A'"(i)). 

For (w ' )  = (w - A"'(i)), the results are 

((o){h)r; (l){-l)]l(w - A"'(i)){h - A"'( j ) l r ' )  
((0){01; (l)I-llll(o -A"'(i)){o -A"'(i)l) 

= ( - ] ) J - '  Z ( K - ' ( { w  -A"'(l)I, { h  -A"YJ)})), . , Y i p  

i v t w  

x U({vHo)(h - A%)}{-ll; { h M o  - A " ' ( i ) l ~ ' ) ( K ( { w l ,  { h l ) ) i u l R r  
(4.3) 

and 

-U,+ I - k -  1 

M~ OX - 0.4- i -  k 
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and 

wk -ut + i- k -  1 
x + ,  w t - o , + i - k  

(4.6) 

resulting from (3 36) and (3 37) 

Table 1 .  Ratios R of rp(ZN.W)2u(N) redurd Wignrr coefficients for the couplnng 
(U) x (1)- (0') Here h, = o + vi, k = I ,  , N. where uk IS some non-negative even mteger 

Table 2 Ratios R of sp(ZN,W)~u(h') reduced Wagner eoefficientr for the coupling 
(o)x(l)-t(o')  and some low-weight i m p s  ( h )  and ( h ' )  Here prr and qr, are defined by 
p.,=o,--w,+i-sand q,,=w,+w,-r-rrespectively,and S [ ~ - j ) = l  or-1 accordingto 
whether IS] or I > ]  
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The sp(ZN, R) 3 u(N) reduced Wigner coefficients under consideration have there- 
fore been expressed in terms of the K-matrix, the known reduced matrix elements of 
z and same u(N) 61- or 9j-type recoupling eoefficients In some important cases, they 
can be gwen in very specific analytic form by taking the results of the appendix for 
the X-matrix into account. As examples, the ratios R,.,, defined in (4.21, are listed in 
tables 1-4 for the following four case3 respectively: 

N and { h }  arbitrary, (0) = (&) 

N a n d  (0)  arbitrary, { h } = { w )  or ( ~ + A ' ~ ' ( p , q ) } ,  { h ' } = { w ' }  or {w'+A'''(s,t)) 

N = 3 ,  ( w , w 2 ) = ( w + ~ ,  w - ~ ) ,  (oiol)=(o'+ I ,  u'-l), h l - o '  even 

N = 2 ,  (wlwJ=(o+f w - i ) ,  ( w : w ; ) = ( w ' + l ,  w'-I), hi-w'odd 

I t  

(note that here a dot over a symbol implies that this symbol is repeated as often as 
necessary, for instance (G)=  (aN)). The former three cases are multiplicity-free, 
whereas the latter corresponds to multiplicity-free { h )  and multiplicity-two (h'} irreps. 
In particular, it is clear that from tables 1, 2 and 4, all the sp(4, R )  2 u(2) reduced 
Wignercoefficientsrelatlngtheirreps(ww),(o+f, o- f ) , and(o+ l ,  w -1)areexplicitly 
known. 

Appendix. The K-matrix elements 

The (KX';-maiiix ekmenis can be evaiuated from K.K'({uj. {o})= 1 through recur- 
sion relationships, which follow from (2 13) by taking matrlx elements between two 



vcs theory of sp(2 N ,  RI vector operators 2711 

Table 4. Ratlor R,  or \ p l 4 . R l ~ u l Z l  reduced Wigner coefficients for the coupling (U+ 
i , w - ~ ) ~ ( I , - ( w ' + l . w ' - l )  an the case where h i - w ' t s  odd The u!ZIirrep {u,v;t IS 

l h , - o + f . h ~ - w - f 1 a r l h , - w - ) , h , - w + ~ l  according towhether h - w - $ ~ r e v e n o r  
odd 

r-space orthonormal basis states (2.11). Such recursion relations can be written as 
(Rowe 1984, Deenen and Quesne 1985, Hecht 1987) 

E [Aiiv'l, {h '})  -~U{fi), ~ k } ) l ( ( o ) l ~ 3 ~ ' ~ ~ 3 l I ~ l l ( ~ ) ~ ~ } P ( ~ } )  
(Sib 

x (KK'((w1, { h } ) ) ; c m v , p  

= L ( K K ~ ( { w } , { h ' } ) ) , , , ~ ~ ~ , , ~ ~ i ~ ( ( w ) { ~ } P ' ~ h ' } l l ~ l l ~ ~ ) ~ ~ } ~ { h } )  ! A I )  
l i ' l d  

where the u(N) reduced matrix elements of z are given in (3.22) and (3.231, and 

A(( U}, { h } )  = f h,( h, + N - 2 i +  1) - a  1 U,( U, + 2 N  -21 + 2 )  ( A 2 )  

denotes the eigenvalue of the operator A, defined in (2.10), corresponding to the state 
I ( w ) { ~ M h } x ) .  

For one-dimensional K K ' ( { o } ,  ( / I } )  submatrices, {U} is entirely determined by { h ) ,  
p is unnecessary and one may take K ' ( { w } ,  { h } )  = K ( { o } ,  {h}).  Whenever both 
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KK'( (wJ .  ( h } )  and KK'((w') ,  {h'))  are one-dimensional, equation (AI)  srmply 

for (h')  contained in { h ) x ( 2 ) ,  and (v') in { u ) x { 2 ) .  Denoting {U') and (h')  by 
{v+ZA"'(k)J and (h+A"' ( i , j ) ]  respectively, we obtain from (A2) and (A3) 

(A4) 

In such a case, K ( ( w J , { t J )  is defined as the positive square roof of K z ( { w l , ( h ) )  For 
higher-dimensional K K  ( ( w ) .  ( h ) )  submatrices, one has to solve (AI). Then the 
K ( { w ) ,  { h ] )  submatrices are determined by diagonalizing KK'( {o ) ,  { h ) )  and applying 
(2.15) and (2.17). 

We give below some examples of results for one- and two-dimensional submatnces. 

K z ( { o ) ,  {/I +A"'( i, j ) ] )  = (h ,  + h, - vk + k - i - j+S, )K' ( {w} ,  { h } )  

Al .  The case of {h]={wiA'"(i , j ) ]  

This is an example of application of (A4) with {U) = {OJ and {U'} = 12) The result is 

K ' ( { o } ,  { w  +A'"(i, j ) ] )  = w ,  +o, - i -1 + 1 + S,. (A5) 

AZ. The ease of (0) 

All states of (0) are multiplicity-free with { h )  given by h, = U +  v,, i = 1,. . , N. Applica- 
tion of (A4) leads to (Deenen and Quesne 1982) 

A3. The case of (w i 1 6) 

All states of (w + 1 w )  are multiplicity-free with { h )  given by h, = o + v, + S,m, i = 
1, .  . , N, for some m E { I , .  . , N ) .  Direct application of (A4) again leads to 

( h ,  + 0 - 1  - 1 + & , ) I !  
K ' ( ( o  + 1 01, ( h ) )  - n , (2w - i  - 1+26,,)1! 

A4. The ease of (G w - 1) 

All states of (Go-I) are multiplicity-free with i h )  given by h, =w+u, -S, , ,  i = 
1,. . , N, for some m E { I , .  . . , N } .  From (AJ), one obtains 

(h,  +o - i - 1 - 
K z ( { G o - l ] , { h ] ) = n  

I ( 2 w - i - 1 - 2 S , w ) ! ! .  

A5. The case of {o + f, w - f) for sp(4, R) 

This is a special case of both cases 3 and 4. Denoting h, by h, =w+u,+$-S,, ,  
i = I ,  2, m E {l, 21, one has 

( h , + w - $ - S m l ) ! ! ( h , + o - $ - S  )If 
K z ( ( o + $ ,  o -$I, { h , h 2 ) )  = ,' ". (A9) 

( 2 0  -1)!! (2w -4)!! 
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A6. Die case of (w+I, w - 1 )  and h2-w evenfor sp[4,R) 

AI1 states of (U+ I, w - 1) with h 2 - o  even are multiplicity-free with (u,vJ given by 
U, = h, -U. i = 1.2 Application of (A4) gives (Castafios er al 1985) 

( h ,  + w -2 ) ! ! (h2+o  -3)!!  
K z ( { o +  I ,  o - I 1 , ( i i t h ~ 1 ) ~ ( 2 ~ 0 - 2 )  . (A10) (20 ) ! ! (2w  -3)!!  

A7. Theeaseof ( w + l , o - l ) a n d h l - w  oddfnrsp(4.R) 

The states of (o + 1, o - 1) with k2 -o odd have multipllnty two and correspond CO 

( y l v z } = { h , - o - 7 , h 2 - o + 1 1  of {h , -o+l ,h2 -w-1} .  The matrix elements of 
K K ' ( { o + l ,  o-l) ,  { h , h J ) ,  obtained by solvmg (All, can be written as (Castafios et 
a/  1985) 

where 

The eigenvalues of the 2 x 2  matnx K K ' ( ( o + I , o - l } ,  { h , h J )  are given by 

(A131 
( / I ,  + o - 3 )  !! ( h 2  + o - 4)!! 

( 2 ~ ) ! ! ( 2 0 - 3 ) ! !  d , , =  4[(2o -3)(h,+ h2)+4(o - l ) ( w  - 2 ) i A l  

where d ,  ( 4 )  corresponds to the + (-1 sign, and 

A =  [4(o - l ) ( w  -2) (h t  - h2)(h l  - h2+2)+(h,+ h,)2]"'. (A14 

The (real) unitary matrix U converting KK'( [w+l ,o - i } ,  {h lh2) )  to diagonal form 
can be written as 

where 

-(2w - 3 ) ( h -  h,)(h, - h2+2)- h , -hz+(h ,  -h,+l)A '" 
2(h ,  -h ,+l )A I sin 4 = 

2( h, -h,)(h, - h2+2)(hI - o + 2 ) ( h 2 - o +  1) 
( h ,  - h2+ I)A[-(2w -3) (h2  -h,)(h,  -h2+2)- h ,  - h,+(ht- h2+ 041 cos 6 = 
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